Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats

Author:

Vanuopadath MuralidharanORCID,Raveendran Dileepkumar,Nair Bipin Gopalakrishnan,Sadasivan Nair SudarslalORCID

Abstract

AbstractVenom proteome profiling of Naja naja from the Western Ghats region in Kerala was achieved through SDS-PAGE and RP-HPLC followed by Q-TOF LC-MS/MS analysis, incorporating PEAKS and Novor assisted de novo sequencing methodologies. A total of 115 proteins distributed across 17 different enzymatic and non-enzymatic venom protein families were identified through conventional and 39 peptides through homology-driven proteomics approaches. Fourteen peptides derived through de novo complements the Mascot data indicating the importance of homology-driven approaches in improving protein sequence information. Among the protein families identified, glutathione peroxidase and endonuclease were reported for the first time in the Indian cobra venom. Immunological cross-reactivity assessed using Indian polyvalent antivenoms suggested that VINS showed better EC50 (2.48 μg/mL) value than that of PSAV (6.04 μg/mL) and Virchow (6.03 μg/mL) antivenoms. Western blotting experiments indicated that all the antivenoms elicited poor binding specificities, especially towards low molecular mass proteins. Second-generation antivenomics studies revealed that VINS antivenom was less efficient to detect many low molecular mass proteins such as three-finger toxins and Kunitz-type serine protease Inhibitors. Taken together, the present study enabled a large-scale characterization of the venom proteome of Naja naja from the Western Ghats and emphasized the need for developing more efficient antivenoms.HighlightsProteomics of cobra venom resulted in the identification of 115 proteins representing 17 snake venom protein families.De novo approaches exclusively yielded 39 peptides harbouring multiple amino acid mutations.Glutathione peroxidase and endonuclease were identified for the first time in Indian cobra venom.Indian polyvalent antivenoms showed varying cross-reactivity towards cobra venom.VINS antivenom was less efficient to detect many low molecular mass proteins (< 20 kDa).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3