Type IV pili share a conserved mechanism of motor-independent retraction that is an inherent property of the pilus filament

Author:

Chlebek Jennifer L.,Craig Lisa,Dalia Ankur B.ORCID

Abstract

ABSTRACTType IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants produced less stable pili, likely due to diminished pilin-pilin interactions within the filament. One mutation adds a bulky residue to α1C, a universally conserved feature of type IV pilins. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi com-petence T4P is sufficient to induce motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent V. cholerae toxin-co-regulated T4P stabilizes the filament and prevents retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies on the inherent instability of the pilus filament that may be conserved in diverse T4Fs. This provides the first evidence for a long-standing, yet untested, model in which pili retract in the absence of a motor by spontaneous de-polymerization.SIGNIFICANCEExtracellular pilus filaments are critical for the virulence and persistence of many bacterial pathogens. A crucial property of these filaments is their ability to dynamically extend and retract from the bacterial surface. A detailed mechanistic understanding of pilus retraction, however, remains lacking in many systems. Here, we reveal that pilus retraction is an inherent property of the pilus filament. These observations are broadly relevant to diverse pilus systems, including those in many bacterial pathogens, and may help inform novel therapeutic strategies that aim to target pilus dynamic activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3