Intraspecific trait changes have large impacts on community functional composition but do not affect ecosystem function

Author:

Pichon Noémie A.ORCID,Cappelli Seraina L.ORCID,Allan EricORCID

Abstract

AbstractPlant functional traits can provide a more mechanistic understanding of community responses to global change and effects on ecosystem functions. In particular, nitrogen enrichment shifts trait composition by promoting dominance of fast growing, acquisitive plants (with high specific leaf area [SLA] and low leaf dry matter content [LDMC]), and such fast species have higher aboveground biomass production. Changes in mean trait values can be due to a shift in species identity, a shift in species relative abundance and/or a shift in intraspecific trait values. However, we do not know the relative importance of these three shifts in determining responses to global change and effects on function.We quantified the relative importance of composition, abundance and intraspecific shifts in driving variation in SLA and LDMC. We collected leaf samples in a large grassland experiment, which factorially manipulates functional composition (slow vs. fast species), plant species richness, nitrogen enrichment and foliar fungal pathogen removal. We fitted structural equation models to test the relative importance of abundance shifts, intraspecific shifts and sown trait composition in contributing to overall variation in community weighted mean traits and aboveground and belowground biomass production.We found that intraspecific shifts were as important as abundance shifts in determining community weighted mean traits, and even had large effects relative to a wide initial gradient in trait composition. Intraspecific trait shifts resulted in convergence towards intermediate SLA, in diverse communities, although convergence was reduced by nitrogen addition and enhanced by pathogen removal. In contrast, large intraspecific shifts in LDMC were not influenced by the treatments. Belowground biomass was reduced by SLA and increased by LDMC, while aboveground biomass increased in communities dominated by high SLA species. However, despite large intraspecific trait shifts, intraspecific variation in these traits had no effect on above or belowground biomass production.Our results add to a growing body of literature showing large intraspecific trait variation and emphasise the importance of using field sampled data to determine community composition. However, they also show that intraspecific variation does not affect ecosystem functioning and therefore trait response-effect relationships may differ between vs. within species.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3