A fungal powdery mildew pathogen induces extensive local and marginal systemic changes in the Arabidopsis thaliana microbiota

Author:

Durán Paloma,Reinstädler Anja,Rajakrut Anna Lisa,Hashimoto MasayoshiORCID,Garrido-Oter RubenORCID,Schulze-Lefert PaulORCID,Panstruga RalphORCID

Abstract

SummaryPowdery mildew is a foliar disease caused by epiphytically growing obligate biotrophic ascomycete fungi. How powdery mildew colonization affects host resident microbial communities locally and systemically remains poorly explored.We performed powdery mildew (Golovinomyces orontii) infection experiments with Arabidopsis thaliana grown in either natural soil or a gnotobiotic system and studied the influence of pathogen invasion into standing natural multi-kingdom or synthetic bacterial communities (SynComs).We found that after infection of soil-grown plants, G. orontii outcompetes numerous resident leaf-associated fungi. We further detected a significant shift in foliar but not root-associated bacterial communities in this setup. Pre-colonization of germ-free A. thaliana leaves with a bacterial leaf-SynCom, followed by G. orontii invasion, induced an overall similar shift in the foliar bacterial microbiota and minor changes in the root-associated bacterial assemblage. However, a standing root SynCom in root samples remained robust against foliar infection with G. orontii. Although pathogen growth was unaffected by the leaf SynCom, fungal infection caused a more than two-fold increase in leaf bacterial load.Our findings indicate that G. orontii infection affects mainly microbial communities in local plant tissue, possibly driven by pathogen-induced changes in source-sink relationships and host immune status.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3