Comparing synaptic proteomes across seven mouse models for autism reveals molecular subtypes and deficits in Rho GTPase signaling

Author:

Carbonell Abigail U.,Freire-Cobo Carmen,Deyneko Ilana V.,Erdjument-Bromage Hediye,Clipperton-Allen Amy E.,Rasmusson Randall L.,Page Damon T.,Neubert Thomas A.,Jordan Bryen A.

Abstract

AbstractImpaired synaptic function is a common phenotype in animal models for autism spectrum disorder (ASD), and ASD risk genes are enriched for synaptic function. Here we leverage the availability of multiple ASD mouse models exhibiting synaptic deficits and behavioral correlates of ASD and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare the hippocampal synaptic proteomes from 7 mouse models. We identified common altered cellular and molecular pathways at the synapse, including changes in Rho family small GTPase signaling, suggesting that it may be a point of convergence in ASD. Comparative analyses also revealed clusters of synaptic profiles, with similarities observed among models for Fragile X syndrome (Fmr1 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), and the BTBR+ model of idiopathic ASD. Opposing changes were found in models for cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), Phelan McDermid syndrome (Shank3 InsG3680), Timothy syndrome (Cacna1c G406R), and ANKS1B syndrome (Anks1b haploinsufficiency), which were similar to each other. We propose that these clusters of synaptic profiles form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Drawn from an internally controlled survey of the synaptic proteome across animal models, our findings support the notion that synaptic dysfunction in the hippocampus is a shared mechanism of disease in ASD, and that Rho GTPase signaling may be an important pathway leading to disease phenotypes in autism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3