Constructing smaller genome graphs via string compression

Author:

Qiu YutongORCID,Kingsford Carl

Abstract

AbstractThe size of a genome graph — the space required to store the nodes, their labels and edges — affects the efficiency of operations performed on it. For example, the time complexity to align a sequence to a graph without a graph index depends on the total number of characters in the node labels and the number of edges in the graph. The size of the graph also affects the size of the graph index that is used to speed up the alignment. This raises the need for approaches to construct space-efficient genome graphs.We point out similarities in the string encoding approaches of genome graphs and the external pointer macro (EPM) compression model. Supported by these similarities, we present a pair of linear-time algorithms that transform between genome graphs and EPM-compressed forms. We show that the algorithms result in an upper bound on the size of the genome graph constructed based on an optimal EPM compression. In addition to the transformation, we show that equivalent choices made by EPM compression algorithms may result in different sizes of genome graphs. To further optimize the size of the genome graph, we purpose the source assignment problem that optimizes over the equivalent choices during compression and introduce an ILP formulation that solves that problem optimally. As a proof-of-concept, we introduce RLZ-Graph, a genome graph constructed based on the relative Lempel-Ziv EPM compression algorithm. We show that using RLZ-Graph, across all human chromosomes, we are able to reduce the disk space to store a genome graph on average by 40.7% compared to colored de Bruijn graphs constructed by Bifrost under the default settings.The RLZ-Graph software is available at https://github.com/Kingsford-Group/rlzgraph

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3