Aging impairs the essential contributions of non-glial progenitors to neurorepair in the dorsal telencephalon of the Killifish N. furzeri

Author:

Van houcke JolienORCID,Mariën ValerieORCID,Zandecki CarolineORCID,Vanhunsel SophieORCID,Moons LieveORCID,Ayana RajagopalORCID,Seuntjens EveORCID,Arckens LutgardeORCID

Abstract

SummaryThe aging central nervous system (CNS) of mammals displays progressive limited regenerative abilities. Recovery after loss of neurons is extremely restricted in the aged brain. Many research models fall short in recapitulating mammalian aging hallmarks or have an impractically long lifespan. We established a traumatic brain injury model in the African turquoise killifish (Nothobranchius furzeri), a regeneration-competent vertebrate model that evolved to naturally age extremely fast. Stab-wound injury of the aged killifish dorsal telencephalon unveils an impaired and incomplete regeneration response when compared to young individuals. Remarkably, killifish brain regeneration is mainly supported by atypical non-glial progenitors, yet their proliferation capacity appears declined with age. We identified a high inflammatory response and glial scarring to also underlie the hampered generation of new neurons in aged fish. These primary results will pave the way for further research to unravel the factor age in relation to neurorepair, and to improve therapeutic strategies to restore the injured and/or diseased aged mammalian CNS.HighlightsAging impairs neurorepair in the killifish pallium at multiple stages of the regeneration processAtypical non-glial progenitors support the production of new neurons in the naive and injured dorsal palliumThe impaired regeneration capacity of aged killifish is characterized by a reduced reactive proliferation of these progenitors followed by a decreased generation of newborn neurons that in addition, fail to reach the injury siteExcessive inflammation and glial scarring surface as potential brakes on brain repair in the aged killifish pallium

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3