Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans

Author:

Rajaei Moein,Shekhar Saxena AyushORCID,Johnson Lindsay M.,Snyder Michael C.,Crombie Timothy A.ORCID,Tanny Robyn E.ORCID,Andersen Erik C.ORCID,Joyner-Matos Joanna,Baer Charles F.ORCID

Abstract

AbstractImportant clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the lab as in nature. The ratio of transitions to transversions (Ts/Tv) is consistently lower in C. elegans mutation accumulation (MA) experiments than in nature, which has been argued to be in part due to increased oxidative stress in the lab environment. Using whole-genome sequence data from a set of C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased endogenous oxidative stress, we find that the base-substitution spectrum is similar between mev-1 lines, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). By contrast, the rate of short insertions is greater in the mev-1 lines, consistent with studies in other organisms in which environmental stress led to an increase in the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are qualitatively different from those of non-mononucleotide sequence, both for indels and base-substitutions, and whereas the non-mononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different. The discrepancy in mutational spectra between lab MA experiments and natural variation is likely due to a consistent (but unknown) effect of the lab environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3