Improved alpha-beta power reduction via combined Electrical and Ultrasonic stimulation in a Parkinsonian Cortex-Basal Ganglia-Thalamus Computational Model

Author:

Tarnaud ThomasORCID,Joseph WoutORCID,Schoeters RubenORCID,Martens LucORCID,Tanghe EmmericORCID

Abstract

AbstractObjectiveTo investigate computationally the interaction of combined electrical and ultrasonic modulation of isolated neurons and of the Parkinsonian cortex-basal ganglia-thalamus loop.MethodsContinuous-wave or pulsed electrical and ultrasonic neuromodulation is applied to isolated Otsuka plateau-potential generating subthalamic nucleus (STN) and Pospischil regular, fast and low-threshold spiking cortical cells in a temporally-alternating or simultaneous manner. Similar combinations of electrical/ultrasonic waveforms are applied to a Parkinsonian biophysical cortex-basal ganglia-thalamus neuronal network. Ultrasound-neuron interaction is modelled respectively for isolated neurons and the neuronal network with the NICE and SONIC implementations of the bilayer sonophore underlying mechanism. Reduction in α—β spectral energy is used as a proxy to express improvement in Parkinson’s disease by insonication and electrostimulation.ResultsSimultaneous electro-acoustic stimulation achieves a given level of neuronal activity at lower intensities compared to the separate stimulation modalities. Conversely, temporally alternating stimulation with 50 Hz electrical and ultrasound pulses is capable of eliciting 100 Hz STN firing rates. Furthermore, combination of ultrasound with hyperpolarizing currents can alter cortical cell relative spiking regimes. In the Parkinsonian neuronal network, high-frequency pulsed separated electrical and ultrasonic deep brain stimulation (DBS) reduce pathological αβ power by entraining STN-neurons. In contrast, continuous-wave ultrasound reduces pathological oscillations by silencing the STN. Compared to the separated stimulation modalities, temporally simultaneous or alternating electro-acoustic stimulation can achieve higher reductions in αβ power for the same contraints on electrical/ultrasonic intensity.ConclusionContinuous-wave and pulsed ultrasound reduce pathological oscillations by different mechanisms. Electroacoustic stimulation further improves αβ power for given safety limits and is capable of altering cortical relative spiking regimes.Significancefocused ultrasound has the potential of becoming a non-invasive alternative of conventional DBS for the treatment of Parkinson’s disease. Here, we elaborate on proposed benefits of combined electro-acoustic stimulation in terms of improved dynamic range, efficiency, resolution, and neuronal selectivity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3