The anterior Hox gene ceh-13 and elt-1/GATA activate the posterior Hox genes nob-1 and php-3 to specify posterior lineages in the C. elegans embryo

Author:

Murray John Isaac,Preston Elicia,Crawford Jeremy P.,Rumley Jonathan D.,Amom Prativa,Anderson Breana D.,Sivaramakrishnan Priya,Patel Shaili D.,Bennett Barrington Alexander,Lavon Teddy D.,Peng Felicia,Zacharias Amanda L.ORCID

Abstract

AbstractHox transcription factors play a conserved role in specifying positional identity during animal development, with posterior Hox genes typically repressing the expression of more anterior Hox genes. Here, we dissect the regulation of the posterior Hox genes nob-1 and php-3 in the nematode C. elegans. We show that nob-1 and php-3 are co-expressed in gastrulation-stage embryos in cells that previously expressed the anterior Hox gene ceh-13. This expression is controlled by several partially redundant transcriptional enhancers. These enhancers require ceh-13 for expression, providing a striking example of an anterior Hox gene positively regulating a posterior Hox gene. Several other regulators also act positively through nob-1/php-3 enhancers, including elt-1/GATA, ceh-20/ceh-40/Pbx, unc-62/Meis, pop-1/TCF, ceh-36/Otx and unc-30/Pitx. We identified defects in both cell position and cell division patterns in ceh-13 and nob-1;php-3 mutants, suggesting that these factors regulate lineage identity in addition to positional identity. Together, our results highlight the complexity and flexibility of Hox gene regulation and function and the ability of developmental transcription factors to regulate different targets in different stages of development.Author SummaryHox genes are critical for head-to-tail patterning during embryonic development in all animals. Here we examine the factors that are necessary to turn on two posterior Hox genes, nob-1 and php-3, in the nematode worm, C. elegans. We identified six new transcription factors and three enhancer regions of DNA that can activate expression of nob-1/php-3. Unexpectedly, these activating transcription factors included ceh-13, an anterior Hox gene, and elt-1, a regulator of skin development that is briefly expressed in many cells that do not adopt skin fates, including the cells that express nob-1. Furthermore, the cellular defects we observed in ceh-13 and nob- 1;php-3 mutant embryos indicate that the early embryonic functions of these Hox genes help determine the identity of cells as well as their position within the embryo. Our findings identify new roles for Hox genes in C. elegans and emphasize the ability of transcription factors to contribute to the diversification of cell types and the adoption of specific cell types at different phases of embryonic development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3