Abstract
AbstractMutations in the Cl−/H+ exchanger CLC7 and its subunit OSTM1 result in osteopetrosis, lysosomal disorders, and pigmentation defects in mice and humans. How CLC7/OSTM1 regulates pigmentation in skin and hair melanocytes remains unexplored. In human epidermal melanocytes, we found CLC7/OSTM1 localized to melanosomes, the organelles in which melanin is synthesized, where it negatively regulates melanin production. Using a novel ratiometric melanosomal pH indicator, we showed that CLC7 acidifies melanosomes, opposing the function of the oculocutaneous albinism II (OCA2) Cl− ion channel. The de novo CLC7 variant (CLC7-Y715C) that causes albinism in humans and mice, decreased melanocytes pigmentation, which was restored by coexpression of OCA2. Remarkably, the enlarged hyperacidic vacuoles caused by CLC7-Y715C were also rescued by OCA2 coexpression in both melanocytes and non-melanocytic cells. Our data uncover a novel mechanism by which CLC7 regulates melanocyte pigmentation and identifies OCA2 as a tool to counteract the effects of CLC7 activating mutations.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献