The chicken or the egg? Plastome evolution and a novel loss of the inverted repeat in papilionoid legumes

Author:

Lee Chaehee,Choi In-Su,Cardoso Domingos,de Lima Haroldo C.,de Queiroz Luciano P.,Wojciechowski Martin F.,Jansen Robert K.,Ruhlman Tracey A

Abstract

AbstractThe plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR-lacking clade (IRLC) and the plant model Medicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study 33 newly sequenced plastomes of papilionoid legumes and outgroups were evaluated, along with 34 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, just ∼20% of the sampling represents the IRLC with the remainder selected to represent the early-branching papilionoid clades. A number of IR-related and repeat-mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated with ycf2 resulted in intraindividual plastome heteroplasmy. Although loss of the inverted repeat has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non-IR repeats in driving plastome change is discussed.Significance statementComparative genomic approaches employing plastid genomes (plastomes) have revealed that they are more variable across angiosperms than previously suggested. This study examined 64 species of Fabaceae and outgroups, including 33 newly sequenced taxa, to explore plastome structural evolution of the subfamily Papilionoideae in a phylogenetic context. Several unusual features of the inverted repeat highlight the importance of recombination in plastomic structural changes within and between individuals and species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3