A screen for Twist-interacting proteins identifies Twinstar as a regulator of muscle development during embryogenesis

Author:

Balakrishnan MridulaORCID,Howard Austin,Yu Shannon F.,Sommer Katie,Nowak Scott J.,Baylies Mary K.ORCID

Abstract

ABSTRACTMyogenesis inDrosophilarelies on the activity of the transcription factor Twist during several key events of mesoderm differentiation. To identify the mechanism(s) by which Twist establishes a unique gene expression profile in specific spatial and temporal locales, we employed a yeast-based double interaction screen to discover new Twist-interacting proteins (TIPs) at themyocyte enhancer factor 2 (mef2)andtinman (tinB)myogenic enhancers. We identified a number of proteins that interacted with Twist at one or both enhancers, and whose interactions with Twist and roles in muscle development were previously unknown. Through genetic interaction studies, we find that Twinstar (Tsr), and its regulators are required for muscle formation. Loss of function and null mutations intsrand its regulators result in missing and/or misattached muscles. Our data suggest that the yeast double interaction screen is a worthy approach to investigate spatial-temporal mechanisms of transcriptional regulation in muscle and in other tissues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3