Abstract
ABSTRACTBackgroundDuring the first wave of COVID-19 it was hypothesized that COVID-19 is subject to multi-wave seasonality, similar to Influenza-Like Illnesses since time immemorial. One year into the pandemic, we aimed to test the seasonality hypothesis for COVID-19.MethodsWe calculated the average annual time-series for Influenza-Like Illnesses based on incidence data from 2016 till 2019 in the Netherlands, and compared these with two COVID-19 time-series during 2020/2021 for the Netherlands. We plotted the time-series on a standardized logarithmic infection scale. Finally, we calculated correlation coefficients and used univariate regression analysis to estimate the strength of the association between the time-series of COVID-19 and Influenza-Like Illnesses.ResultsThe time-series for COVID-19 and Influenza-Like Illnesses were strongly and highly significantly correlated. The COVID-19 peaks were all during flu season, and lows were all in the opposing period. Finally, COVID-19 meets the multi-wave characteristics of earlier flu-like pandemics, namely a short first wave at the tail-end of a flu season, and a longer and more intense second wave during the subsequent flu season.ConclusionsWe conclude that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. Further, the COVID-19 pandemic satisfies the criteria of earlier respiratory pandemics, namely a first wave that is short-lived at the tail-end of flu season, and a second wave that is longer and more severe.This seems to imply that the same factors that are driving the seasonality of Influenza-Like Illnesses are causing COVID-19 seasonality as well, such as solar radiation (UV), temperature, relative humidity, and subsequently seasonal allergens and allergies.HIGHLIGHTSTime-series analysis shows that COVID-19 and historic of Influenza-Like illnesses have highly similar seasonal patterns in the Netherlands.COVID-19 satisfies the criteria of earlier flu-like pandemics, namely a short cycle at the end of flu season, and a longer, more intense cycle during the subsequent flu season.The implication is that the seasonal factors driving flu season, are also responsible for COVID-19 seasonality.We developed and applied a new method to determine seasonality, encompassing comparative time-series analysis, a standardized logarithmic infection scale, and qualitative seasonality criteria.
Publisher
Cold Spring Harbor Laboratory