Benchmarking saliency methods for chest X-ray interpretation

Author:

Saporta AdrielORCID,Gui XiaotongORCID,Agrawal AshwinORCID,Pareek AnujORCID,Truong Steven QH,Nguyen Chanh DT,Ngo Van-Doan,Seekins Jayne,Blankenberg Francis G.,Ng Andrew Y.,Lungren Matthew P.,Rajpurkar PranavORCID

Abstract

AbstractSaliency methods, which “explain” deep neural networks by producing heat maps that highlight the areas of the medical image that influence model prediction, are often presented to clinicians as an aid in diagnostic decision-making. Although many saliency methods have been proposed for medical imaging interpretation, rigorous investigation of the accuracy and reliability of these strategies is necessary before they are integrated into the clinical setting. In this work, we quantitatively evaluate three saliency methods (Grad-CAM, Grad-CAM++, and Integrated Gradients) across multiple neural network architectures using two evaluation metrics. We establish the first human benchmark for chest X-ray interpretation in a multilabel classification set up, and examine under what clinical conditions saliency maps might be more prone to failure in localizing important pathologies compared to a human expert benchmark. We find that (i) while Grad-CAM generally localized pathologies better than the two other saliency methods, all three performed significantly worse compared with the human benchmark; (ii) the gap in localization performance between Grad-CAM and the human benchmark was largest for pathologies that had multiple instances, were smaller in size, and had shapes that were more complex; (iii) model confidence was positively correlated with Grad-CAM localization performance. Our work demonstrates that several important limitations of saliency methods must be addressed before we can rely on them for deep learning explainability in medical imaging.

Publisher

Cold Spring Harbor Laboratory

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3