Abstract
AbstractThe prevalence of antibiotic-resistant bacteria in surface water in Lebanon is a growing concern and understanding the mechanisms of the spread of resistance determinants is essential. We aimed at studying the occurrence of resistant organisms and determinants in surface water sources in Lebanon and understanding their mobilization and transmission. Water samples were collected from five major rivers in Lebanon. 91 isolates were recovered out of which 25 were multidrug-resistant (MDR) and accordingly were further characterized. Escherichia coli and Klebsiella pneumoniae were the most commonly identified MDR isolates. Conjugation assays coupled with in silico plasmid analysis were performed and validated using PCR-based replicon typing (PBRT) to identify and confirm incompatibility groups and the localization of β-lactamase encoding genes. E. coli EC23 carried a blaNDM-5 gene on a conjugative, multireplicon plasmid, while blaCTX-M-15 and blaTEM-1B were detected in the majority of the MDR isolates. Different ST types were identified including the highly virulent E. coli ST131. Our results showed a common occurrence of bacterial contaminants in surface water and an increase in the risk for the dissemination of resistance determinants exacerbated with the ongoing intensified population mobility in Lebanon and the widespread lack of wastewater treatment.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献