Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping

Author:

Gabrieli Tslil,Michaeli Yael,Avraham Sigal,Torchinsky Dmitry,Juhasz Matyas,Coruh Ceyda,Arbib Nissim,Zhou Zhaohui Sunny,Law Julie A.ORCID,Weinhold ElmarORCID,Ebenstein YuvalORCID

Abstract

ABSTRACTDNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and among the most significant epigenetic modifications. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in the CpG context allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. For this method, a CpG methyltransferase was used to transfer an azide to cytosines from a synthetic S-adenosyl-l-methionine cofactor analog. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased two-fold by the addition of a nucleosidase that degrades the inactive by-product of the azide-cofactor after labeling, and prevents its inhibitory effect. We first used the method to determine the decline in global DNA methylation in chronic lymphocytic leukemia patients and then performed whole genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published methylation maps produced by bisulfite sequencing. Although mapping resolution is limited by optical detection to 500-1000 base pairs, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. DNA methylation patterns and epigenetic memory

2. Amount and Distribution of 5-Methylcytosine in Human DNA from Different Types of Tissues or Cells;Nucleic Acids Res.,1982

3. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future

4. DNA hypomethylation in cancer cells

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3