Murine norovirus capsid plasticity – Glycochenodeoxycholic acid stabilizes P-domain dimers and triggers escape from antibody recognition

Author:

Creutznacher Robert,Maaß Thorben,Dülfer JasminORCID,Feldmann Clara,Hartmann Veronika,Knickmann Jan,Westermann Leon Torben,Smith Thomas J.,Uetrecht CharlotteORCID,Mallagaray AlvaroORCID,Peters ThomasORCID,Taube StefanORCID

Abstract

AbstractThe murine norovirus (MNV) capsid protein is the target for various neutralizing antibodies binding to distal tips of its protruding (P)-domain. The bile acid glycochenodeoxycholic acid (GCDCA), an important co-factor for murine norovirus (MNV) infection, has recently been shown to induce conformational changes in surface-loops and a contraction of the virion. Here, we employ protein NMR experiments using stable isotope labeled MNV P-domains to shed light on underlying molecular mechanisms. We observe two separate sets of NMR resonance signals for P-domain monomers and dimers, permitting analysis of the corresponding exchange kinetics. Unlike human norovirus GII.4 P-dimers, which exhibit a half-life in the range of several days, MNV P-dimers are very short lived with a half-life of about 17 s. Addition of GCDCA shifts the equilibrium towards the dimeric form by tightly binding to the P-dimers. In MNV virions GCDCA-mediated stabilization of the dimeric arrangement of P-domains generates a more ordered state, which in turn may entropically assist capsid contraction. Numerous long-range chemical shift perturbations (CSPs) upon addition of GCDCA reflect allosteric conformational changes as a feature accompanying dimer stabilization. In particular, CSPs indicate rearrangement of the E’F’ loop, a target for various neutralizing antibodies. Indeed, treating MNV virions with GCDCA prior to neutralizing antibody exposure abolishes neutralization. These findings advance our understanding of GCDCA-induced structural changes of MNV capsids and experimentally support an intriguing viral immune escape mechanism relying on GCDCA-triggered conformational changes of the P-dimer.Significance StatementThis study sheds light on the role of glycochenodeoxycholic acid (GCDCA) in promoting murine norovirus (MNV) infection and immune escape. Binding of GCDCA to the dimeric P-domain has been well characterized by crystallography and cryo EM studies, showing that upon GCDCA binding, a 90° rotation of the P-domain occurs, which results in its collapse onto the underlying shell of the virus. Our NMR experiments now reveal P-dimer stability as a new dimension of plasticity of MNV capsids and suggest that capsid contraction is entropically assisted. Conformational changes as a feature of P-dimer stabilization eliminate recognition by neutralizing antibodies, no longer being able to prevent infection. These findings highlight key differences between human and MNV capsid structures, promote our understanding of MNV infection on a molecular level, and reveal a novel immune escape mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3