Abstract
AbstractPhase separation is emerging as a universal principle for how cells use dynamic subcompartmentalization to organize biochemical reactions in time and space1,2. Yet, whether the emergent physical properties of these biomolecular condensates are important for their biological function remains unclear. The intrinsically disordered protein PopZ forms membraneless condensates at the poles of the bacterium Caulobacter crescentus and selectively sequesters kinase-signaling cascades to regulate asymmetric cell division3–5. By dissecting the molecular grammar underlying PopZ phase separation, we find that unlike many eukaryotic examples, where unstructured regions drive condensation6,7, a structured domain of PopZ drives condensation, while conserved repulsive features of the disordered region modulate material properties. By generating rationally designed PopZ mutants, we find that the exact material properties of PopZ condensates directly determine cellular fitness, providing direct evidence for the physiological importance of the emergent properties of biomolecular condensates. Our work codifies a clear set of design principles illuminating how sequence variation in a disordered domain alters the function of a widely conserved bacterial condensate. We used these insights to repurpose PopZ as a modular platform for generating synthetic condensates of tunable function in human cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献