Sequence neighborhoods enable reliable prediction of pathogenic mutations in cancer genomes

Author:

Banerjee ShayantanORCID,Raman KarthikORCID,Ravindran BalaramanORCID

Abstract

AbstractIdentifying cancer-causing mutations from sequenced cancer genomes hold much promise for targeted therapy and precision medicine. “Driver” mutations are primarily responsible for cancer progression, while “passengers” are functionally neutral. Although several computational approaches have been developed for distinguishing between driver and passenger mutations, very few have concentrated on utilizing the raw nucleotide sequences surrounding a particular mutation as potential features for building predictive models. Using experimentally validated cancer mutation data in this study, we explored various string-based feature representation techniques to incorporate information on the neighborhood bases immediately 5’ and 3’ from each mutated position. Density estimation methods showed significant distributional differences between the neighborhood bases surrounding driver and passenger mutations. Binary classification models derived using repeated cross-validation experiments gave comparable performances across all window sizes. Integrating sequence features derived from raw nucleotide sequences with other genomic, structural and evolutionary features resulted in the development of a pan-cancer mutation effect prediction tool, NBDriver, which was highly efficient in identifying pathogenic variants from five independent validation datasets. An ensemble predictor obtained by combining the predictions from NBDriver with two other commonly used driver prediction tools (CONDEL and Mutation Taster) outperformed existing pan-cancer models in prioritizing a literature-curated list of driver and passenger mutations. Using the list of true positive mutation predictions derived from NBDriver, we identified a list of 138 known driver genes with functional evidence from various sources. Overall, our study underscores the efficacy of utilizing raw nucleotide sequences as features to distinguish between driver and passenger mutations from sequenced cancer genomes.

Publisher

Cold Spring Harbor Laboratory

Reference89 articles.

1. The cancer genome

2. Radon and Lung Cancer

3. MUTAGENIC MECHANISMS

4. Contributions of the Intrinsic Mutation Process to Cancer Mutation and Risk Burdens;EBioMedicine,2017

5. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine;Genome medicine,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3