The biochemical resolving power of fluorescence lifetime imaging: untangling the roles of the instrument response function and photon-statistics

Author:

Trinh Andrew L.ORCID,Esposito AlessandroORCID

Abstract

AbstractA deeper understanding of spatial resolution has led to innovations in microscopy and the disruption of biomedical research, as with super-resolution microscopy. To foster similar advances in time-resolved and spectral imaging, we have previously introduced the concept of ‘biochemical resolving power’ in fluorescence microscopy. Here, we apply those concepts to investigate how the instrument response function (IRF), sampling conditions, and photon-statistics limit the biochemical resolution of fluorescence lifetime microscopy. Using Fisher information analysis and Monte Carlo simulations, we reveal the complex dependencies between photon-statistics and the IRF, permitting us to quantify resolution limits that have been poorly understood (e.g., the minimum resolvable decay time for a given width of the IRF and photon-statistics) or previously underappreciated (e.g., optimization of the IRF for biochemical detection). With this work, we unravel common misunderstandings on the role of the IRF and provide theoretical insights with significant practical implications on the design and use of time-resolved instrumentation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3