Abstract
AbstractThis report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near infrared (NIR) photoluminescence and fluorescence multiplexing in the first optical tissue window with a material that avoids toxic constituents. This synthesis overcomes the InP synthesis “growth bottleneck” and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure. The ZnSe/InP/ZnS core/shell/shell structure is designed to produce emission from excitons with heavy holes confined in InP shells wrapped around larger-bandgap ZnSe cores and protected by a second shell of ZnS. The InP QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515 – 845 nm. The high absorptivity of InP leads to effective absorbance and photoexcitation of the QDs with UV, visible, and NIR wavelengths in particles with diameters of eight nanometers or less. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model shows the potential of the NIR-emitting InP particles for in vivo imaging.
Publisher
Cold Spring Harbor Laboratory