Abstract
ABSTRACTINTRODUCTIONComputational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning and multi-modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer’s disease.METHODSWe enhance large-scale whole-brain simulation in TVB with a cause-and-effect model linking local Amyloid β PET with altered excitability. We use PET and MRI data from 33 participants of Alzheimer’s Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB-simulated local field potentials (LFP) for machine-learning classification.RESULTSThe combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1-score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the Alzheimer’s-typical spatial distribution.DISCUSSIONThe cause-and-effect implementation of local hyperexcitation caused by Amyloid β can improve the machine-learning-driven classification of Alzheimer’s and demonstrates TVB’s ability to decode information in empirical data employing connectivity-based brain simulation.RESEARCH IN CONTEXTSYSTEMATIC REVIEW. Machine-learning has been proven to augment diagnostics of dementia in several ways. Imaging-based approaches enable early diagnostic predictions. However, individual projections of long-term outcome as well as differential diagnosis remain difficult, as the mechanisms behind the used classifying features often remain unclear. Mechanistic whole-brain models in synergy with powerful machine learning aim to close this gap.INTERPRETATION. Our work demonstrates that multi-scale brain simulations considering Amyloid β distributions and cause-and-effect regulatory cascades reveal hidden electrophysiological processes that are not readily accessible through measurements in humans. We demonstrate that these simulation-inferred features hold the potential to improve diagnostic classification of Alzheimer’s disease.FUTURE DIRECTIONS. The simulation-based classification model needs to be tested for clinical usability in a larger cohort with an independent test set, either with another imaging database or a prospective study to assess its capability for long-term disease trajectories.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献