Abstract
AbstractThe initial phase of the COVID-19 pandemic in the US was marked by limited diagnostic testing, resulting in the need for seroprevalence studies to estimate cumulative incidence and define epidemic dynamics. In lieu of systematic representational surveillance, venue-based sampling was often used to rapidly estimate a community’s seroprevalence. However, biases and uncertainty due to site selection and use of convenience samples are poorly understood. Using data from a SARS-CoV-2 serosurveillance study we performed in Somerville, Massachusetts, we found that the uncertainty in seroprevalence estimates depends on how well sampling intensity matches the known or expected geographic distribution of seropositive individuals in the study area. We use GPS-estimated foot traffic to measure and account for these sources of bias. Our results demonstrated that study-site selection informed by mobility patterns can markedly improve seroprevalence estimates. Such data should be used in the design and interpretation of venue-based serosurveillance studies.
Publisher
Cold Spring Harbor Laboratory