MtrA regulation of essential peptidoglycan cleavage in Mycobacterium tuberculosis during infection

Author:

Peterson Eliza J. R.ORCID,Brooks Aaron NORCID,Reiss David J.,Kaur Amardeep,Wu Wei-Ju,Morrison Robert,Srinivas VivekORCID,Turkarslan SerdarORCID,Pan Min,Carter Warren,Arrieta-Ortiz Mario L.,Ruiz Rene A.,Bhatt ApoorvaORCID,Baliga Nitin S.ORCID

Abstract

AbstractThe success of Mycobacterium tuberculosis (Mtb) is largely due to its ability to withstand multiple stresses encountered in the host. Here, we present a data-driven model that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. The model captures the genome-wide distribution of cis-acting gene regulatory elements and the conditional influences of transcription factors at those elements to elicit environment-specific responses. Analysis of transcriptional responses that may be essential for Mtb to survive acidic stress within the maturing macrophage, identified regulatory control by the MtrAB two-component signal system. Using genome-wide transcriptomics as well as imaging studies, we have characterized the MtrAB circuit by tunable CRISPRi knockdown in both Mtb and the non-pathogenic organism, M. smegmatis (Msm). These experiments validated the essentiality of MtrA in Mtb, but not Msm. We identified that MtrA regulates multiple enzymes that cleave cell wall peptidoglycan and is required for efficient cell division. Moreover, our results suggest that peptidoglycan cleavage, regulated by MtrA, is necessary for Mtb to survive intracellular stress. Further, we present MtrA as an attractive drug target, as even weak repression of mtrA results in loss of Mtb viability and completely clears the bacteria with low-dose isoniazid or rifampicin treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3