Energy Shortage in Human and Mouse Models ofSLC4A11-Associated Corneal Endothelial Dystrophies

Author:

Zhang WenlinORCID,Frausto Ricardo,Chung Doug D.,Griffis Christopher G.,Kao Liyo,Chen Angela,Azimov Rustam,Sampath Alapakkam P.,Kurtz Ira,Aldave Anthony J.

Abstract

PurposeTo elucidate the molecular events in solute carrier family 4 member 11 (SLC4A11)-deficient corneal endothelium that lead to the endothelial dysfunction that characterizes the dystrophies associated withSLC4A11mutations, congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy 4.MethodsComparative transcriptomic analysis (CTA) was performed in primary human corneal endothelial cells (pHCEnC) and murine corneal endothelial cells (MCEnC) with normal and reduced levels of SLC4A11 (SLC4A11KD pHCEnC) and Slc4a11 (Slc4a11−/−MCEnC), respectively. Validation of differentially expressed genes was performed using immunofluorescence staining of CHED corneal endothelium, as well as western blot and quantitative PCR analysis ofSLC4A11KD pHCEnC andSlc4a11−/−MCEnC. Functional analyses were performed to investigate potential functional changes associated with the observed transcriptomic alterations.ResultsCTA revealed inhibition of cell metabolism and ion transport function as well as mitochondrial dysfunction, leading to reduced adenosine triphosphate (ATP) production, inSLC4A11KD pHCEnC andSlc4a11−/−MCEnC. Co-localization of SNARE protein STX17 with mitochondria marker COX4 was observed in CHED corneal endothelium, as was activation of AMPK–p53/ULK1 in bothSLC4A11KD pHCEnC andSlc4a11−/−MCEnC, providing additional evidence of mitochondrial dysfunction and mitophagy. Reduced Na+-dependent HCO3transport activity and altered NH4Cl-induced membrane potential changes were observed inSlc4a11−/−MCEnC.ConclusionsReduced steady-state ATP levels and subsequent activation of the AMPK–p53 pathway provide a link between the metabolic functional deficit and transcriptome alterations, as well as evidence of insufficient ATP to maintain the Na+/K+-ATPase corneal endothelial pump as the cause of the edema that characterizesSLC4A11-associated corneal endothelial dystrophies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3