Multi-Model and Network Inference Based on Ensemble Estimates: Avoiding the Madness of Crowds

Author:

Stumpf Michael P.H.ORCID

Abstract

AbstractRecent progress in theoretical systems biology, applied mathematics and computational statistics allows us to compare quantitatively the performance of different candidate models at describing a particular biological system. Model selection has been applied with great success to problems where a small number — typically less than 10 — of models are compared, but recently studies have started to consider thousands and even millions of candidate models. Often, however, we are left with sets of models that are compatible with the data, and then we can use ensembles of models to make predictions. These ensembles can have very desirable characteristics, but as I show here are not guaranteed to improve on individual estimators or predictors. I will show in the cases of model selection and network inference when we can trust ensembles, and when we should be cautious. The analyses suggests that the careful construction of an ensemble – choosing good predictors – is of paramount importance, more than had perhaps been realised before: merely adding different methods does not suffice. The success of ensemble network inference methods is also shown to rest on their ability to suppress false-positive results. A Jupyter notebook which allows carrying out an assessment of ensemble estimators is provided.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Biophysically Motivated Regulatory Network Inference: Progress and Prospects

2. Akaike H (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike, pp. 215–222. Springer.

3. Arfken G , HJ W , & Harris F (2013). Mathematical Methods for Physicists. Academic Press.

4. Babtie A C & Stumpf M P H (2017). How to deal with parameters for whole-cell modelling. Journal of the Royal Society, Interface / the Royal Society, 14:20170,237.

5. Topological sensitivity analysis for systems biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3