Benchmarking the PEPOP methods for mimicking discontinuous epitopes

Author:

Demolombe Vincent,de Brevern Alexandre G.,Molina Franck,Lavigne Géraldine,Granier Claude,Moreau Violaine

Abstract

AbstractComputational methods provide approaches to identify epitopes in protein antigens to help characterizing potential biomarkers identified by high-throughput genomic or proteomic experiments. PEPOP version 1.0 was developed as an antigenic or immunogenic peptide prediction tool. We have now improved this tool by implementing 32 new methods (PEPOP version 2.0) to guide the choice of peptides that mimic discontinuous epitopes and thus potentially able to replace the cognate protein antigen in its interaction with an antibody. In the present work, we describe these new methods and the benchmarking of their performances.Benchmarking was carried out by comparing the peptides predicted by the different methods and the corresponding epitopes determined by X-ray crystallography in a dataset of 75 antigen-antibody complexes. The Sensitivity (Se) and Positive Predictive Value (PPV) parameters were used to assess the performance of these methods. The results were compared to that of peptides obtained either by chance or by using the SUPERFICIAL tool, the only available comparable method.The PEPOP methods were more efficient than, or as much as chance, and 33 of the 34 PEPOP methods performed better than SUPERFICIAL. Overall, “optimized” methods (tools that use the traveling salesman problem approach to design peptides) can predict peptides that best match true epitopes in most cases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3