Genetic, morphometric, and molecular analyses of interspecies differences in head shape and hybrid developmental defects in the wasp genus Nasonia

Author:

Cohen Lorna B,Edwards Rachel,Moody Dyese,Arsala Deanna,Werren Jack H,Lynch Jeremy AORCID

Abstract

AbstractMales in the parasitoid wasp genus Nasonia (N. vitripennis, N. giraulti, N. longicornis) have distinct, species specific, head shapes. Fertile hybrids among the species are readily produced in the lab allowing genetic analysis of the evolved differences. In addition, the obligate haploidy of males makes these wasps a uniquely powerful model for analyzing the role of complex gene interactions in development and evolution. Previous analyses have shown that complex gene interactions underpin different aspects of the shape differences, and developmental incompatibilities that are specific to the head in F2 haploid hybrid males are also governed by networks of gene interaction. Here we use the genetic tools available in Nasonia to extend our understanding of the gene interactions that affect development and morphogenesis in male heads. Using artificial diploid male hybrids, we show that alleles affecting head shape are codominant, leading to uniform, averaged hybrid F1 diploid male heads, while the alleles mediating developmental defects are recessive, and are not visible in the diploid hybrids. We also determine that divergence in time, rather than in morphological disparity is the primary driver of hybrid developmental defects. In addition, we show that doublesex is necessary for the male head shape differences, but is not the only important factor. Finally we demonstrate that we can dissect complex interspecies gene interaction networks using introgression in this system. These advances represent significant progress in the complex web of gene interactions that govern morphological development, and chart the connections between genomic and phenotypic variation.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Adams D. C. , Collyer M. L. , Kaliontzopoulou A. , Sherratt E. , 2017 Geomorph: Software for geometric morphometric analyses. R package version 3.0.5. https://cran.r-project.org/package=geomorph.

2. Alibert P. , Auffray J.-C. , 2003 Genomic coadaptation, outbreeding depression, and developmental instability. In: Developmental Instability: Causes and Consequences, Oxford University Press, pp. 116–134.

3. Multiplexed shotgun genotyping for rapid and efficient genetic mapping

4. Genetic and developmental analysis of differences in eye and face morphology between Drosophila simulans and Drosophila mauritiana

5. Ploidy has little effect on timing early embryonic events in the haplo-diploid wasp Nasonia;genesis,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3