Surface Sensing Stimulates Cellular Differentiation inCaulobacter crescentus

Author:

Snyder Rhett A.,Ellison Courtney K.ORCID,Severin Geoffrey B.,Waters Christopher M.,Brun Yves V.ORCID

Abstract

AbstractCellular differentiation is a fundamental strategy used by cells to generate specialized functions at specific stages of development. The bacteriumC. crescentusemploys a specialized dimorphic life cycle consisting of two differentiated cell types. How environmental cues, including mechanical inputs such as contact with a surface, regulate this cell cycle remain unclear. Here, we find that surface sensing by the physical perturbation of retracting extracellular pilus filaments accelerates cell cycle progression and cellular differentiation. We show that physical obstruction of dynamic pilus activity by chemical perturbation or by a mutation in the outer membrane pilus pore protein, CpaC, stimulates early initiation of chromosome replication. In addition, we find that surface contact stimulates cell cycle progression by demonstrating that surface-stimulated cells initiate early chromosome replication to the same extent as planktonic cells with obstructed pilus activity. Finally, we show that obstruction of pilus retraction stimulates the synthesis of the cell cycle regulator, cyclic diguanylate monophosphate (c-di-GMP) through changes in the activity and localization of two key regulatory histidine kinases that control cell fate and differentiation. Together, these results demonstrate that surface contact and mechanosensing by alterations in pilus activity stimulateC. crescentusto bypass its developmentally programmed temporal delay in cell differentiation to more quickly adapt to a surface-associated lifestyle.SignificanceCells from all domains of life sense and respond to mechanical cues [1–3]. In eukaryotes, mechanical signals such as adhesion and surface stiffness are important for regulating fundamental processes including cell differentiation during embryonic development [4]. While mechanobiology is abundantly studied in eukaryotes, the role of mechanical influences on prokaryotic biology remains under-investigated. Here, we demonstrate that mechanosensing mediated through obstruction of the dynamic extension and retraction oftightadherence (tad) pili stimulates cell differentiation and cell cycle progression in the dimorphic α-proteobacteriumCaulobacter crescentus. Our results demonstrate an important intersection between mechanical stimuli and the regulation of a fundamental aspect of cell biology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3