Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography – Mass Spectrometry Metabolomics

Author:

Pannkuk Evan L.,Laiakis Evagelia C.ORCID,Girgis Michael,Dowd Sarah E.,Dhungana Suraj,Nishita Denise,Bujold Kim,Bakke James,Gahagen Janet,Authier Simon,Chang Polly,Fornace Albert J.ORCID

Abstract

AbstractWhole body exposure to ionizing radiation (IR) (> 0.7 Gy) damages tissues leading to a range of physical symptoms contributing to acute radiation syndrome (ARS). Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure (generally at doses > 2 Gy) and is a necessity for effective triage in the event of an unanticipated radiological incident and emergency preparedness. Radiation metabolomics can address this aim by assessing metabolic perturbations following various emergency scenarios (e.g., elapsed time to medical care, absorbed dose, combined injury). Gas chromatography – mass spectrometry (GC-MS) is a standardized platform ideal for chromatographic separation, identification, and quantification of metabolites to discriminate molecular signatures that can be utilized in assessing radiation injury. We performed GC time-of-flight (TOF) MS for global profiling of nonhuman primate (NHP) urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed a higher separation of groups from urine signatures vs. serum signatures. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by analysis of tricarboxylic acid (TCA) intermediates with a GC tandem quadrupole (TQ) MS platform in samples collected in a time course during the first week (1, 3, 5, and 7 d) after exposure. By adding this temporal component to our previous work exploring dose effects at a single time point of 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3