A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system

Author:

Rachez Christophe,Suldan Zalman,Ward Jeremy,Chang Chao-Pei Betty,Burakov Darya,Erdjument-Bromage Heidye,Tempst Paul,Freedman Leonard P.

Abstract

Nuclear receptors transduce hormonal signals by binding directly to DNA target sites in promoters and modulating the transcription of linked genes. Receptor-mediated transactivation appears to be potentiated in response to ligand by a number of coactivators that may provide key interactions with components of the transcription preinitiation complex and/or alter chromatin structure. Here, we use the vitamin D3 receptor ligand-binding domain (VDR LBD) as an affinity matrix to identify components of a transcriptionally active nuclear extract that interact with VDR in response to ligand. We describe the purification of a complex of at least 10 VDR interacting proteins (DRIPs) ranging from 65 to 250 kD that associate with the receptor in a strictly 1,25-dihydroxyvitamin D3-dependent manner. These proteins also appear to interact with other, but not all, nuclear receptors, such as the thyroid hormone receptor. The DRIPs are distinct from known nuclear receptor coactivators, although like these coactivators, their interaction also requires the AF-2 transactivation motif of VDR. In addition, the DRIP complex contains histone acetyltransferase activity, indicating that at least one or more of the DRIPs may function at the level of nucleosomal modification. However, we show that the DRIPs selectively enhance the transcriptional activity of VDR on a naked DNA template utilizing a cell-free, ligand-dependent transcription assay. Moreover, this activity can be specifically depleted from the extract by liganded, but not unliganded, VDR-LBD. Overexpression of DRIP100 in vivo resulted in a strong squelching of VDR transactivation, suggesting the sequestration of other limiting factors, including components of the DRIP complex. These results demonstrate the existence of a new complex of novel functional nuclear receptor coactivators.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 366 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vitamin D Receptor Regulates the Expression of the Grainyhead-Like 1 Gene;International Journal of Molecular Sciences;2024-07-19

2. Modulating vitamin D receptor–coregulator binding with small molecules;Feldman and Pike' s Vitamin D;2024

3. Structure function relationships of VDR ligands;Feldman and Pike' s Vitamin D;2024

4. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex;International Journal of Molecular Sciences;2023-05-26

5. Natural compounds targeting nuclear receptors for effective cancer therapy;Cancer and Metastasis Reviews;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3