A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells

Author:

Tirasophon Witoon,Welihinda Ajith A.,Kaufman Randal J.

Abstract

Eukaryotes respond to the presence of unfolded protein in the endoplasmic reticulum (ER) by up-regulating the transcription of genes encoding ER protein chaperones, such as BiP. We have isolated a novel human cDNA encoding a homolog to Saccharomyces cerevisiaeIre1p, a proximal sensor for this signal transduction pathway in yeast. The gene product hIre1p is a type 1 transmembrane protein containing a cytoplasmic domain that is highly conserved to the yeast counterpart having a Ser/Thr protein kinase domain and a domain homologous to RNase L. However, the luminal domain has extensively diverged from the yeast gene product. hIre1p expressed in mammalian cells displayed intrinsic autophosphorylation activity and an endoribonuclease activity that cleaved the 5′ splice site of yeastHAC1 mRNA, a substrate for the endoribonuclease activity of yeast Ire1p. Overexpressed hIre1p was localized to the ER with particular concentration around the nuclear envelope and some colocalization with the nuclear pore complex. Expression of Ire1p mRNA was autoregulated through a process that required a functional hIre1p kinase activity. Finally, overexpression of wild-type hIre1p constitutively activated a reporter gene under transcriptional control of the rat BiP promoter, whereas expression of a catalytically inactive hIre1p acted in a trans-dominant-negative manner to prevent transcriptional activation of the BiP promoter in response to ER stress induced by inhibition of N-linked glycosylation. These results demonstrate that hIre1p is an essential proximal sensor of the unfolded protein response pathway in mammalian cells.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 784 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3