Collateral fitness effects of mutations

Author:

Mehlhoff Jacob D.,Stearns Frank W.,Rohm Dahlia,Wang Buheng,Tsou Erh-Yeh,Dutta Nisita,Hsiao Meng-Hsuan,Gonzalez Courtney E.,Rubin Alan F.ORCID,Ostermeier MarcORCID

Abstract

AbstractThe distribution of fitness effects (DFE) of mutation plays a central role in constraining protein evolution. The underlying mechanisms by which mutations lead to fitness effects are typically attributed to changes in protein specific activity or abundance. Here, we reveal the importance of a mutation’s collateral fitness effects, which we define as effects that do not derive from changes in the protein’s ability to perform its physiological function. We comprehensively measured the collateral fitness effects of missense mutations in theE. coli TEM-1β-lactamase antibiotic resistance gene using growth competition experiments in theabsenceof antibiotic. At least 42% of missense mutations inTEM-1were deleterious, indicating that for some proteins, collateral fitness effects occur as frequently as effects on protein activity and abundance. Deleterious mutations caused improper post-translational processing, incorrect disulfide-bond formation, protein aggregation, changes in gene expression, and pleiotropic effects on cell phenotype. Deleterious collateral fitness effects occurred more frequently inTEM-1than deleterious effects on antibiotic resistance in environments with low concentrations of the antibiotic. The surprising prevalence of deleterious collateral fitness effects suggests they may play a role in constraining protein evolution, particularly for highly-expressed proteins, for proteins under intermittent selection for their physiological function, and for proteins whose contribution to fitness is buffered against mutations with deleterious effects on protein activity and protein abundance.Significance StatementMutations provide the source of genetic variability upon which evolution acts. Deleterious protein mutations are commonly thought of in terms of how they compromise the protein’s ability to perform its physiological function. However, mutations might also be deleterious if they cause negative effects on one of the countless other cellular processes. The frequency and magnitude of such collateral fitness effects is unknown. Our systematic study of mutations in a bacterial protein finds widespread collateral fitness effects that were associated with protein aggregation, improper protein processing, incomplete protein transport across membranes, incorrect disulfide-bond formation, induction of stress-response pathways, and unexpected changes in cell properties. Our results suggest that deleterious collateral fitness effects may be an important constraint on protein evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3