Reinforcement of rat hippocampal LTP by holeboard training

Author:

Uzakov Shukhrat,Frey Julietta U.,Korz Volker

Abstract

Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4–5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be transformed (reinforced) into late-LTP by the association of arousing novel environmental stimuli. Here we show that consolidation of spatial memory also reinforces early-LTP in the dentate gyrus. Both memory consolidation and LTP-reinforcement depend on protein synthesis. Four groups of animals were trained by five, seven, eight or 10 trials, respectively, to recognize a fixed pattern of baited holes. The last trial was performed 15 min after tetanus. Errors of long-term reference memory during the last trial were significantly decreased only in the eight- and 10-trial experimental groups compared to pseudo-trained animals. In correlation to this learning effect we found a reinforcement of early-LTP only in these experimental groups compared to controls. The data suggest that the synthesis of new proteins required for spatial reference-memory formation also contributes to LTP maintenance in the hippocampal dentate gyrus.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3