A role for mitotic bookmarking of SOX2 in pluripotency and differentiation

Author:

Deluz Cédric,Friman Elias T.,Strebinger Daniel,Benke Alexander,Raccaud Mahé,Callegari Andrea,Leleu Marion,Manley Suliana,Suter David M.

Abstract

Mitotic bookmarking transcription factors remain bound to chromosomes during mitosis and were proposed to regulate phenotypic maintenance of stem and progenitor cells at the mitosis-to-G1 (M–G1) transition. However, mitotic bookmarking remains largely unexplored in most stem cell types, and its functional relevance for cell fate decisions remains unclear. Here we screened for mitotic chromosome binding within the pluripotency network of embryonic stem (ES) cells and show that SOX2 and OCT4 remain bound to mitotic chromatin through their respective DNA-binding domains. Dynamic characterization using photobleaching-based methods and single-molecule imaging revealed quantitatively similar specific DNA interactions, but different nonspecific DNA interactions, of SOX2 and OCT4 with mitotic chromatin. Using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) to assess the genome-wide distribution of SOX2 on mitotic chromatin, we demonstrate the bookmarking activity of SOX2 on a small set of genes. Finally, we investigated the function of SOX2 mitotic bookmarking in cell fate decisions and show that its absence at the M–G1 transition impairs pluripotency maintenance and abrogates its ability to induce neuroectodermal differentiation but does not affect reprogramming efficiency toward induced pluripotent stem cells. Our study demonstrates the mitotic bookmarking property of SOX2 and reveals its functional importance in pluripotency maintenance and ES cell differentiation.

Funder

Carigest Foundation

Swiss National Science Foundation

Novartis Foundation

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3