Oxygen partitioning into biomolecular condensates is governed by excluded volume

Author:

Garg AnkushORCID,Brasnett ChristopherORCID,Marrink Siewert J.ORCID,Koren KlausORCID,Kjaergaard MagnusORCID

Abstract

AbstractBiomolecular condensates form through the self-assembly of proteins and nucleic acids to create dynamic compartments in cells. By concentrating specific molecules, condensates establish distinct microenvironments that regulate biochemical reactions in time and space. Macromolecules and metabolites partition into condensates depending on their interactions with the macromolecular constituents, however, the partitioning of gases has not been explored. We investigated oxygen partitioning into condensates formed by intrinsically disordered repeat proteins with systematic sequence variations using phosphorescence lifetime imaging microscopy (PLIM). Unlike other hydrophobic metabolites, oxygen is partially excluded from the condensate with partitioning constants more strongly modulated by changes in protein length than hydrophobicity. For repeat proteins, the dense phase protein concentration drops with chain length resulting in a looser condensate with less excluded volume. We found that oxygen partitioning is anti-correlated with dense phase protein concentration, suggesting that oxygen concentration is mainly determined by the solvent accessible volume. This suggests that oxygen partitioning is determined by the physical organization of the condensates rather than the chemical properties of the scaffold. Molecular dynamics simulations suggest that oxygen does not form strong and specific interactions with the scaffold and is dynamic on the nanosecond timescale. Biomolecular condensates thus result in variation of oxygen concentrations on nanometer length-scales, which can tune the oxygen concentration available for biochemical reactions within the cell.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3