Abstract
ABSTRACTSMAX1-LIKE (SMXL) proteins are transcriptional co-repressors that regulate many aspects of plant growth and development. Proteins from the SMAX1- and SMXL78-clades of this family are targeted for degradation after karrikin or strigolactone perception, triggering downstream responses. We investigated how SMXL proteins control development.SMXL7can partially replicateSMAX1function in seeds and seedlings, butSMAX1cannot replaceSMXL7in shoot branching control. Therefore, the distinct roles of these genes arise from differences in protein activity more than expression. Analysis of chimeras and domain deletions of SMAX1 and SMXL7 proteins revealed that an N-terminal domain is necessary and sufficient to specify developmental functions. We screened 158 transcription factors for interactions with SMAX1. The N-terminal domain is necessary and/or sufficient for the majority of candidate interactions. These discoveries enable cross-wiring of karrikin and strigolactone control of plant development and lay a foundation for understanding how SMXL proteins evolved functional differences.
Publisher
Cold Spring Harbor Laboratory