Proline substitutions in the ASIC1 β11-12 linker slow desensitization

Author:

Purohit Rutambhara,Couch TylerORCID,MacLean David M.ORCID

Abstract

AbstractDesensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or “flipping” of a short linker joining the 11thand 12thbeta sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an “upward” conformation while in the desensitized conformation the linker assumes a “downward” state. To accommodate this “downward” state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3