OncogenicKRASMutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells

Author:

Clevenger Abigail J.,Collier Claudia A.,Gorley John Paul M.,McFarlin Maygan K.,Solberg Spencer C.,Kopetz E. Scott,Stratman Amber N.ORCID,Raghavan Shreya A.ORCID

Abstract

AbstractColorectal cancer (CRC) tumors start as precancerous polyps on the inner lining of the colon or rectum, where they are exposed to the mechanics of colonic peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select CRC lines that harbored an oncogenic mutation in theKRASgene. In this work, therefore, we explored the involvement of activatingKRASmutations on peristalsis-associated mechanotransduction in CRC. Peristalsis enriched the cancer stem cell marker LGR5 inKRASmutant (G13D, etc.) lines, in a Wnt-independent manner. Conversely, LGR5 enrichment in wild typeKRASlines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicityin vivoinKRASmutant vs. wild type lines. Differences in mechanotransduction response was additionally apparent via unbiased gene set enrichment analysis, where many unique pathways were enriched in wild type vs. mutant lines, in response to peristalsis. Interestingly, peristalsis also triggered β-catenin nuclear localization independent of Wnt, particularly inKRASmutant lines. The central involvement of KRAS in the mechanotransductive responses was validated via gain and loss of function strategies. β-catenin activation and LGR5 enrichment downstream of peristalsis converged to the activation of the MEK/ERK kinase cascade, that remains active in cells that harbor oncogenicKRASmutations. Taken together, our results demonstrated that oncogenicKRASmutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3