Abstract
AbstractQuantitative polymerase chain reaction (qPCR) offers a rapid, automated, and potentially on-site method for quantifyingL. pneumophilain building potable water systems, complementing and potentially replacing traditional culture-based techniques. However, the application of qPCR in assessing human health risks is complicated by its tendency to overestimate such risks due to the detection of genomic copies that do not correspond to viable, infectious bacteria. This study examines the relationship betweenL. pneumophilameasurements obtained via qPCR and culture-based methods, aiming to understand and establish qPCR-to-culture concentration ratios needed to inform associated health risks. We developed a Poisson lognormal ratio model and a random-effects meta-analysis to analyze variations in qPCR-to-culture ratios within and across sites. Our findings indicate these ratios typically vary from 1:1 to 100:1, with ratios close to 1:1 predicted at all sites. Consequently, adopting a default 1:1 conversion factor appears necessary as a cautious approach to convert qPCR concentrations to culturable concentrations for use in models of associated health risks, for example, through quantitative microbial risk assessment (QMRA) frameworks. Where this approach may be too conservative, targeted sampling and the applications of viability-qPCR could improve the accuracy of qPCR-based QMRA. Standardizing qPCR and culture-based methods and reporting site-specific environmental factors that affect the culturability ofL. pneumophilawould improve the understanding of the relationship between the two methods. The ratio model introduced here shifts us beyond simple correlation analyses, facilitating investigations of temporal and spatial heterogeneities in the relationship. This analysis is a step forward in the integration of QMRA and molecular biology, as the framework demonstrated here forL. pneumphilais applicable to other pathogens monitored in the environment.
Publisher
Cold Spring Harbor Laboratory
Reference51 articles.
1. AFNOR 2010 NF T90-471: Water quality. Detection and quantification of Legionella and/or Legionella pneumophila by concentration and genic amplification by polymerase chain reaction (PCR).
2. Validation and in-field testing of a new on-site qPCR system for quantification of Legionella pneumophila according to ISO/TS 12869: 2012 in HVAC cooling towers;Journal of Water and Health,2019
3. Anonymous 2012 ISO/TS 12869:2012: Water quality—Detection and Quantification of Legionella spp. and/or Legionella pneumophila by Concentration and Genic Amplification by Quantitative Polymerase Chain Reaction (qPCR), International Organisation for Standardisation Geneva.
4. A quantitative microbial risk assessment model for legionnaires’ disease: Animal model selection and dose-response modeling;Risk Anal,2007
5. Legionnaires' disease: evaluation of a quantitative microbial risk assessment model