Using explainable artificial intelligence to identify linguistic biomarkers of amyloid pathology in primary progressive aphasia

Author:

Robertson Cole,Rezaii Neguine,Hochberg Daisy,Quimby Megan,Wolff Phillip,Dickerson Bradford C.ORCID

Abstract

AbstractIntroductionRecent success has been achieved in Alzheimer’s disease (AD) clinical trials targeting amyloid beta (β), demonstrating a reduction in the rate of cognitive decline. However, testing methods for amyloid-β positivity are currently costly or invasive, motivating the development of accessible screening approaches to steer patients toward appropriate diagnostic tests. Here, we employ a pre-trained language model (Distil-RoBERTa) to identify amyloid-β positivity from a short, connected speech sample. We further use explainable AI (XAI) methods to extract interpretable linguistic features that can be employed in clinical practice.MethodsWe obtained language samples from 74 patients with primary progressive aphasia (PPA) across its three variants. Amyloid-β positivity was established through the analysis of cerebrospinal fluid, amyloid PET, or autopsy. 51% of the sample was amyloid-positive. We trained Distil-RoBERTa for 16 epochs with a batch size of 6 and a learning rate of 5e−5, and used the LIME algorithm to train interpretation models to interpret the trained classifier’s inference conditions.ResultsOver ten runs of 10-fold cross-validation, the classifier achieved a mean accuracy of 92%, SD = 0.01. Interpretation models were able to capture the classifier’s behavior well, achieving an accuracy of 97% against classifier predictions, and uncovering several novel speech patterns that may characterize amyloid-β positivity.DiscussionOur work improves previous research which indicates connected speech is a useful diagnostic input for prediction of the presence of amyloid-β in patients with PPA. Further, we leverage XAI techniques to reveal novel linguistic features that can be tested in clinical practice in the appropriate subspecialty setting. Computational linguistic analysis of connected speech shows great promise as a novel assessment method in patients with AD and related disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3