Efficiently determining membrane-bound conformations of peripheral membrane proteins using replica exchange with hybrid tempering

Author:

Natarajan Chandramouli,Srivastava Anand

Abstract

AbstractAccurately sampling the membrane-bound conformations of a peripheral membrane proteins (PMP) using classical all-atom molecular dynamics simulations (AAMD) is a formidable enterprise due to the rugged free energy landscape of the protein-membrane system. In general, AAMD-based extraction of binding geometry requires simulations of multiple systems with different initial user-defined binding poses that may not be exhaustive. As an alternative, advanced sampling methods are also applied to elucidate the membrane-binding mechanism of PMPs but these techniques are generally computationally expensive and often depend on choice of the collective variables (CV). In this work, we showcase the utility of CV-free replica exchange with hybrid tempering (REHT) method in capturing the membrane-bound conformations of PMPs by testing it on the Osh4 amphipathic lipid-packing sensor (ALPS) motif, a 27 amino-acid membrane binding peptide. We show that REHT samples all the membrane-bound conformations of the Osh4 ALPS peptide at their correct populations and does it in a highly efficient manner with minimum computational time. We clearly show that, out of the two significant conformations, the peptide prefers horizontal conformations over vertical ones. In both the conformations, REHT captures all the vital residue-wise membrane contacts. The transition between the two configuration is not uncommon as our calculations reveal a ∼ 2 kT free energy difference between the two conformations. Interestingly, from our simulations we also find that the transition from vertical to horizontal conformation involves limited unfolding the main helix’s last turn. From our findings, we conclude that REHT samples the membrane-bound conformations of Osh4 ALPS peptide very efficiently and also provides additional insights and information that are often not available with regular piece-wise AAMD simulations. The method can be used as an efficient tool to explore the membrane-binding mechanisms of PMPs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3