Structural comparison of protein-RNA homologous interfaces reveals widespread overall conservation contrasted with versatility in polar contacts

Author:

Mahmoudi IkramORCID,Quignot ChloéORCID,Martins CarlaORCID,Andreani JessicaORCID

Abstract

AbstractProtein-RNA interactions play a critical role in many cellular processes and pathologies. However, experimental determination of protein-RNA structures is still challenging, therefore computational tools are needed for the prediction of protein-RNA interfaces. Although evolutionary pressures can be exploited for structural prediction of protein-protein interfaces, and recent deep learning methods using protein multiple sequence alignments have radically improved the performance of protein-protein interface structural prediction, protein-RNA structural prediction is lagging behind, due to the scarcity of structural data and the flexibility involved in these complexes. To study the evolution of protein-RNA interface structures, we first identified a large and diverse dataset of 2,022 pairs of structurally homologous interfaces (termed structural interologs). We leveraged this unique dataset to analyze the conservation of interface contacts among structural interologs based on the properties of involved amino acids and nucleotides. We uncovered that 73% of distance-based contacts and 68% of apolar contacts are conserved on average, and the strong conservation of these contacts occurs even in distant homologs with sequence identity below 20%. Distance-based contacts are also much more conserved compared to what we had found in a previous study of homologous protein-protein interfaces. In contrast, hydrogen bonds, salt bridges, and π-stacking interactions are very versatile in pairs of protein-RNA interologs, even for close homologs with high interface sequence identity. We found that almost half of the non-conserved distance-based contacts are due to a small proportion of interface residues that no longer belong to the interface in the interolog, a phenomenon we term “interface switching out”. We also examined possible recovery mechanisms for non-conserved hydrogen bonds and salt bridges, uncovering diverse scenarii of switching out, change in amino acid chemical nature, intermolecular and intramolecular compensations. Our findings provide insights for integrating evolutionary signals into predictive protein-RNA structural modeling methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3