Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling

Author:

Brynes AdamORCID,Zhang Yu,Williams John V.ORCID

Abstract

AbstractHuman metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions1,2,3,4. HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptorsin vitro, in part by preventing STAT1 phosphorylation5. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.ImportanceHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, and especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic protein (SH) that is known to block IFN signaling, but the mechanism by which it functions, and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and demonstrates that SH depletes JAKs, critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and related viruses interfere with immune signals important for disease could pave the way for future treatments aimed at mitigating severe infections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3