Human Substantia Nigra Neurons Encode Reward Expectations

Author:

Imtiaz Zarghona,Kato AyakaORCID,Kopell Brian H.,Qasim Salman E.ORCID,Davis Arianna NealORCID,Martinez Lizbeth Nunez,Heflin MattORCID,Kulkarni KaustubhORCID,Morsi Amr,Gu XiaosiORCID,Saez IgnacioORCID

Abstract

AbstractDopamine (DA) signals originating from substantia nigra (SN) neurons are centrally involved in the regulation of motor and reward processing. DA signals behaviorally relevant events where reward outcomes differ from expectations (reward prediction errors, RPEs). RPEs play a crucial role in learning optimal courses of action and in determining response vigor when an agent expects rewards. Nevertheless, how reward expectations, crucial for RPE calculations, are conveyed to and represented in the dopaminergic system is not fully understood, especially in the human brain where the activity of DA neurons is difficult to study. One possibility, suggested by evidence from animal models, is that DA neurons explicitly encode reward expectations. Alternatively, they may receive RPE information directly from upstream brain regions. To address whether SN neuron activity directly reflects reward expectation information, we directly examined the encoding of reward expectation signals in human putative DA neurons by performing single-unit recordings from the SN of patients undergoing neurosurgery. Patients played a two-armed bandit decision- making task in which they attempted to maximize reward. We show that neuronal firing rates (FR) of putative DA neurons during the reward expectation period explicitly encode reward expectations. First, activity in these neurons was modulated by previous trial outcomes, such that FR were greater after positive outcomes than after neutral or negative outcome trials. Second, this increase in FR was associated with shorter reaction times, consistent with an invigorating effect of DA neuron activity during expectation. These results suggest that human DA neurons explicitly encode reward expectations, providing a neurophysiological substrate for a signal critical for reward learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3