Regulation of dopamine release by tonic activity patterns in the striatal brain slice

Author:

Boumhaouad Siham,Makowicz Emily A,Choi Sejoon,Bouhaddou Nezha,Balla Jihane,Taghzouti Khalid,Sulzer David,Mosharov Eugene V.

Abstract

AbstractVoluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons that extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: a low-frequency tonic activity that is intrinsically generated, and superimposed high-frequency phasic bursts that are driven by synaptic inputs.Ex vivoacute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics thanin vivorecordings. To investigate the relationship between phasic and tonic neuronal activity, we stimulated the slice in patterns intended to mimic tonic activity, which were interrupted by a series of burst stimuli. Conditioning the striatal slice with low-frequency activity altered DA release triggered by high-frequency bursts, and produced kinetic parameters that resemble thosein vivo. In the absence of applied tonic activity, nicotinic acetylcholine receptor and D2 dopamine receptor antagonists had no significant effect on neurotransmitter release driven by repeated burst activity in the striatal brain slice. In contrast, in tonically stimulated slices, D2 receptor blockade decreased the amount of DA released during a single burst and facilitated DA release in subsequent bursts. This experimental system provides a means to reconcile the difference in the kinetics of DA releaseex vivoandin vivoand provides a novel approach to more accurately emulate pre- and post-synaptic mechanisms that control axonal DA release in the acute striatal brain slice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3