Theoretical analyses for the evolution of biogenic volatile organic compounds (BVOCs) emission strategy

Author:

Hirose Sotaro,Satake Akiko

Abstract

AbstractPlants emit biogenic volatile organic compounds (BVOCs) as signaling molecules, playing a crucial role in inducing resistance against herbivores. Neighboring plants that eavesdrop on BVOC signals can also increase defenses against herbivores or alter growth patterns to respond to potential risks of herbivore damage. Despite the significance of BVOC emissions, the evolutionary rationales behind their release and the factors contributing to the diversity in such emissions remain poorly understood. To unravel the conditions for the evolution of BVOC emission, we developed a spatially-explicit model that formalizes the evolutionary dynamics of BVOC emission and non-emission strategies. Our model considered two effects of BVOC signaling that impact the fitness of plants: intra-individual communication, which mitigates herbivore damage through the plant’s own BVOC signaling incurring emission costs, and inter-individual communication, which alters the influence of herbivory based on BVOC signals from other individuals without incurring emission costs. Employing two mathematical models—the lattice model and the random distribution model—we investigated how intra-individual communication, inter-individual communication, and spatial structure influenced the evolution of BVOC emission strategies. Our analysis revealed that the increase in intra-individual communication promotes the evolution of the BVOC emission strategy. In contrast, the increase in inter-individual communication effect favors cheaters who benefit from the BVOCs released from neighboring plants without bearing the costs associated with BVOC emission. Our analysis also demonstrated that the narrower the spatial scale of BVOC signaling, the higher the likelihood of BVOC evolution. This research sheds light on the intricate dynamics governing the evolution of BVOC emissions and their implications for plant-plant communication.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3