Sodium azide mutagenesis induces a unique pattern of mutations

Author:

Liu ChaochihORCID,Frascarelli GiuliaORCID,Stec Adrian O.ORCID,Heinen ShaneORCID,Lei LiORCID,Wyant Skylar R.ORCID,Legg ErikORCID,Spiller MonikaORCID,Muehlbauer Gary J.ORCID,Smith Kevin P.ORCID,Fay Justin C.ORCID,Morrell Peter L.ORCID

Abstract

AbstractThe nature and effect of mutations are of fundamental importance to the evolutionary process. The generation of mutations with mutagens has also played important roles in genetics. Applications of mutagens include dissecting the genetic basis of trait variation, inducing desirable traits in crops, and understanding the nature of genetic load. Previous studies of sodium azide-induced mutations have reported single nucleotide variants (SNVs) found in individual genes. To characterize the nature of mutations induced by sodium azide, we analyze whole-genome sequencing (WGS) of 11 barley lines derived from sodium azide mutagenesis, where all lines were selected for diminution of plant fitness owing to induced mutations. We contrast observed mutagen-induced variants with those found in standing variation in WGS of 13 barley landraces. Here, we report indels that are two orders of magnitude more abundant than expected based on nominal mutation rates. We found induced SNVs are very specific, with C→T changes occurring in a context followed by another C on the same strand (or the reverse complement). The codons most affected by the mutagen include the sodium azide-specific CC motif (or the reverse complement), resulting in a handful of amino acid changes and relatively few stop codons. The specific nature of induced mutations suggests that mutagens could be chosen based on experimental goals. Sodium azide would not be ideal for gene knockouts but will create many missense mutations with more subtle effects on protein function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3