Intrinsic Dynamics and Neural Implementation of a Hypothalamic Line Attractor Encoding an Internal Behavioral State

Author:

Vinograd AmitORCID,Nair AdityaORCID,Linderman Scott W.ORCID,Anderson David J.ORCID

Abstract

SummaryLine attractors are emergent population dynamics hypothesized to encode continuous variables such as head direction and internal states. In mammals, direct evidence of neural implementation of a line attractor has been hindered by the challenge of targeting perturbations to specific neurons within contributing ensembles. Estrogen receptor type 1 (Esr1)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) show line attractor dynamics in male mice during fighting. We hypothesized that these dynamics may encode continuous variation in the intensity of an internal aggressive state. Here, we report that these neurons also show line attractor dynamics in head-fixed mice observing aggression. We exploit this finding to identify and perturb line attractor-contributing neurons using 2-photon calcium imaging and holographic optogenetic perturbations. On-manifold perturbations demonstrate that integration and persistent activity are intrinsic properties of these neurons which drive the system along the line attractor, while transient off-manifold perturbations reveal rapid relaxation back into the attractor. Furthermore, stimulation and imaging reveal selective functional connectivity among attractor-contributing neurons. Intriguingly, individual differences among mice in line attractor stability were correlated with the degree of functional connectivity among contributing neurons. Mechanistic modelling indicates that dense subnetwork connectivity and slow neurotransmission are required to explain our empirical findings. Our work bridges circuit and manifold paradigms, shedding light on the intrinsic and operational dynamics of a behaviorally relevant mammalian line attractor.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3